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Semiclassical canonical rate theory
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The exact quantum rate may be represented as a phase space trace of a product of two operators: the
symmetrized thermal flux operator and a projection operator onto the product space. A semiclassical analysis
of the phase space representation of these two operators is presented and used to explain recent results found
for a quantum thermodynamic rate theory. For low temperatures, the central object that is responsible for the
oscillatory nature of the flux operator is a periodic orbit on the upside down potential surface whose period is
2h/kgT. The semiclassical analysis of the flux distribution explains why a variation of the dividing surface
leads to improved thermodynamic rate estimates in asymmetric systems. The semiclassicatdiritary
phase limii of the projection operator is shown to be identical to the classical projection operator. A semi-
classical rate theory is obtained using the product of the semiclassical flux distribution and either the parabolic
barrier or the classical projection operator and compared with the exact rate and approximate quantum ther-
modynamic estimate$S1063-651X98)13310-X

PACS numbse(s): 03.65.Sq, 31.70.Hg, 82.20.Pm

[. INTRODUCTION [9,10] argued that deep tunneling can only be described with
the added help of imaginary time trajectories across the bar-
The quantum theory of reaction rateld is almost as old rier.
as quantum mechanics itself, but even at the turn of this One way of getting a semiclassical theory of thermal rates
century it presents some formidable challenges. During thé by considering the semiclassical microcanonical theory
past two decades one could broadly identify two approache@nd then averaging over the canonical distribution. This ap-
One is to recognize the difficulty in obtaining exact quantumProach was used by ggi and Hontsch@l1] to derive an
rate expressions except for some Specia| cases, such ase)gpression for the thermal rate valid at all temperatures.
parabo"c barrier, and proceed to find the numerica"y exacirhey based themselves on Miller's semiclassical transition
quantum rate. This approach has seen dramatic advancgite theory{12], which in turn is based on Wigner's ap-
during the past decade and one now can almost routinelproximate rate expressidi3].
obtain numerically exact rates for systems with three degrees In this paper we choose a different starting point: the
of freedom[2]. exact thermal rate expression as derived by Miller, Schwartz,
A second approach, especially important for the con-and Tromp[14] and used15] by Thompson and Miller,
densed matter community, was to replace rigor with reason- 1
able approximations. A strategy that has gained much popu- k(M=Q(M)™* t“_Tc Crs(1), (1.1
larity in recent years is to estimate quantum rates using
centroid densitief3,4]. Since a centroid density is a thermo- where Cr4(t) is the so-called flux side correlation function,
dynamic object, it can be readily estimated using Monteyhich may be written in the form
Carlo path integral techniquégs]. .
Another major class of approximation methods may be Crd(t)=tr[F(B,aps)P(1)]. (1.2
thought of as mixed classical quantum propagation tech-
niques. Since time-dependent numerical methods for systenfd1e quantum projection operatx(t) is defined as
with two or three degrees of freedom are available, it makes A o
sense to treat the quantum dynamics of a few degrees of P(t)=e"""h(g)e "V (1.3
freedom exactly and treat the rest classically. The semiclas- . ) )
sical theory of reaction rates has also been resurrected @ndh is the step function operator, whict the space rep-
recent years. Various researchf8s7] have noted that much resentationis unity on the product sidegt>0) and is zero
of the quantum dynamics may be accounted for by suitablen the reactant sideq&0). F(B,0ps) is the symmetrized
integration of semiclassical approximations to the real timeguantum thermal flux operator at the dividing surface defined
propagator. This approach has recently raised the question h¥ 0ps,
to whether quantum tunneling could be accounted for semi- . . .
classically by considering only real time trajectories. Kesha- F(B,9ps) =€ A"2F(qpg e #H?, (1.9
vamurthy and Miller[8] showed that real time trajectories .
account for much of the tunneling, but Maitra and HellerandH is the Hamiltonian operator of the system. The sym-
metrized flux operatoF(gps) (in one dimensiohis
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Q,(T) is the reactants partition function at temperatlite Heaviside function is important, but how does this come

and 8=1/KkgT. about? Can one obtain a good quantum approximation for
In Miller's rate expression all the dynamics is hidden in the projection operator?
the infinite time limit of the projection operator In this paper we will provide a semiclassical analysis of
X . the phase space structure of the symmetrized flux operator
P=lim P(t)=Ilim eth/ﬁﬁ(Q)e*iH“ﬁ_ (1.6  and the projection operator. In R¢23] we found that for

t—oo t—oo

deep tunneling, the thermal flux distribution becomes rather
delocalized in momentum, with positive and negative peaks.
Obtaining the exact rate necessitates a real time propagatiofihe variational flux distribution had the same qualitative
A numerically exact solution is feasible_for _systems with astrycture, irrespective of the symmetry of the potential. A
few degrees of freedofi15-20, but there is still a way to go  semiclassical theory for the flux distribution that explains
before one can rigorously implement the time evolution in &hese features is presented in Sec. Il. The variational aspect is
liquid. o . . also explained; the optimal location of the dividing surface is
In a recent publicatiori21] it was noted that Miller's  the one for which the two trajectories that contribute to the
exact rate expression could be recast as a phase space tragfhmetrized thermal flux operator join smoothly. The cen-
of the Wigner representatidi22] of the product of the pro-  tra| object of the flux distribution is thus a periodic orbit on
jection operator and the symmetrized thermal flux operatofihe inverted potential, whose period #2(the factor of two
The Wigner representation of an operator is defined as  is not a misprint and onlyhalf of its full action contributes

1 to the flux.
O(p.q)= dé ePéhiq—L1£0lq+ L&), The _semmlassmal theory of the projection operator is
(p.a) 27t ) ¢ ePTa—2£|0la+34) studied in Sec. Ill. The idea that one could derive the semi-

1.7 classical limit of the projection operator would, at first sight,
seem strange. The projection operator has in it an infinite
The exact expression for the quantum rate may thus be writime limit and any semiclassical time-dependent approach is
ten formally as expected to fail for infinitely long times. Note, however, that
for a parabolic barrier, the semiclassical limit of the projec-
_ 1 * . tion operator is exact, even though here too one resorts to an
K(T)=Q(T)" "2 f,mdp dg Rp.q)F(p.d;/5,dps)- infinite time limit. This is a reflection of the fact that the
(1.8 semiclassical propagator takes into account the quadratic
fluctuations around the classical path and for a parabolic po-
A guantum transition state theof@TST) was then formu- tential this is all that matters. The generic potentiéd)) has
lated, in which one replaces the exact projection operatoa parabolic form at the barrier, while as— or asq—
with its leading-order approximation obtained by considering— o the potential goes to a constant, where again the semi-
only the dynamics of the parabolic barrier. Alternatively, it classical propagator is exact. The semiclassical propagator is
was suggestefP1] that one could replace the quantum pro-thus exact except for the nonharmonic region of the potential
jection operator with its classical limit, thus giving a mixed where the particle spends typically a short time. For short
guantum classical theoIQCLT), in which the flux opera- time dynamics the semiclassical approximation is actually
tor is evaluated exactly and the projection operator is obgood and one might expect a semiclassical theory to be quite
tained from classical trajectories. useful. We find that the semiclassical limit of the Wigner

Both theories were studied in some detail in Ré&l]  distribution function of the projection operator is just the
and [23]. It was shown in Ref[21] that the accuracy of classical projection operator.

QTST is comparable to that of the centroid method. QTST A remarkable semiclassical picture thus emerges from
invariably gives a numerical upper bound for the quantunthis theory. The amplitude of the flux distribution in the deep
rate, whose accuracy deteriorates with decreasing temperanneling region is reduced by only half of the action of the
ture and increasing asymmetry of the potential. The MQCLTimaginary time periodic orbit whose period i#2 This ac-
approach gives an improvement, but not a very big one. Th&on is substantially less than the full instanton action of the
MQCLT approach was also subsequently implemented irperiodic orbit with periods3 that appears in the standard
Ref.[24]. semiclassical treatments of thermal reaction rgt¢ésndeed,

An interesting feature of both theories is their variationalan upper bound for the rate, based on only the flux distribu-
property [21]. A variation of the location of the dividing tion, gives an estimate that is approximately the square root
surface, looking for the point at which the approximation isof the exact transmission coefficief5]. The flux distribu-
stationary, leads to significant improvement in the case ofion is not positive definite and it is the combination of the
asymmetric system3]. two operators that gives the tunneling rate. The relatively

These studies pose a few challenges. Why does QTSIBrge positive peaks of the flux distribution are almost en-
give an upper bound? Why is the variation of the dividingtirely canceled by the negative peaks. The projection opera-
surface useful and is it at all clear that one will really find antor defines the regions of phase space that contribute most.
extremum of the reactive flux with respect to the dividing As the temperature is lowered, the flux distribution delocal-
surface? What is needed to improve the QTST and MQCLTizes and it is the combination of this delocalization and the
theories so that they will become quantitative even in theprojection operator that leads to the net rate. The semiclassi-
deep tunneling region? The perturbation theory analysis prezal rate theory that emerges from the combination of the two
sented in Ref[23] indicated that a smearing of the classical operators is presented in Sec. IV and applied to the symmet-
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ric Eckart barrier. We end in Sec. V with a further discussionwhere the actiorS(q”,q’) is that of a classical trajectory
of the implications of the present theory on our understandmoving on the upside down potential with energywhich
ing of quantum tunneling. was initiated at timeé=0 at the pointq’ and ended up at
time 78/2 at the pointg”:
Il. THE SEMICLASSICAL SYMMETRIZED THERMAL )
FLUX OPERATOR IN PHASE SPACE S(q",q")= fq dq p(q)— 1% BE. 2.7)
o

A. Preliminaries

The momentunp’ in the prefactor of Eq(2.6) is the initial
momentum of the trajectory. If more than one classical tra-
jectory obeys the double ended boundary conditions then one
-1 must sum over the contribution of all such trajectories.
H=-—p2+V(Qq). (2.1 The rate expression has in it derivatives of the thermal

For a particle with massn the one-dimensional Hamil-
tonian operatoH is

2m density matrix element. We note that
Without loss of generality, the potenti® may be divided JS(q",q")
into a parabolic barrier and a nonlinear term a—q,= -p’, (2.9
2
V(g)=V = imew* g2+ V(q) (2.2 aS(q",q")
—=p". (2.9
such that the barrier is located @t 0. The matrix elements aq

of the symmetrized thermal flux operator may be expresse
[14,21] in terms of matrix elements of the thermal density

operatore™ A"

(Fhe derivative of the prefactor may be ignored since in the
context of the semiclassical approximation it will only lead
to small correction terms. Therefore, we may write down the

e ) Wigner representation of the thermal flux operator as
(9"[F(B.dps)|a’)

i o, ) F(p.9;8.9ps)
- ” e—,BH/Z > e—BH/Z ’ i .
2m (<q | | ddps (Gosl o ! f dé ePem| . q—é,%s
) P A dmmh J_« 2
_<q”|e_BH/2|qDS><WDS e_BH/2|q’>), ¢ ¢
—pilg+ EaQDS) A(Q_ quDS)
(2.3
where we used the shorthand notation XA( q+ quS) g~ (UA)[S(a+&2aps) +S(a—&l2aps)]
~ (9 -~
<q/r o BHI2 = >E<£ <qrr|eBH/2|q>) _ (2.10
DS 9=dps (2.4 where we used the fact that the action and the prefactor are

symmetric with respect to time reversal of the trajectory
S(x,x")=5(x',x) andA(x’,x)=A(x,x")]. The momentum
i(9",q) is the initial momentum of the trajectory that was

initiated at timet=0 at the pointg and reached the point

at the timefi 8/2.

The Wigner representation of the symmetrised thermal flu
operator is then by definition

F(p.d;B.dps)
_ I ® d ei(pgm)( < o é e—(B/Z)ﬁ 0 > B. The optimal tunneling path
amm J o 2 J0ps To understand the structure of the flux distribution in
phase space, one should look for those regions in phase

x(q o= (BIH q+§ _ q_é o= BHI2 q space for which the amplitude of the flux distribution is
bs 2 2 DS maximal. The main contributions will come from those tra-
P i jectories whose action is minimized. This implies minimiz-

><< e (B2H| g4 §> _ (2.5 ing the sum of _actions appgaring in _the exponent, w.ith re-

ddps| 2 spect to two variables: the Wigner varialgland the location

. . o . in phase spaca. Variation of the actions with respect to the
The semiclassical approximation for a matrix element ofwigner variable¢ gives the condition
the thermal density matrix ik26]

*

3 &
—172 pf(q+ 7vQDs):pf(q_?aQDs), (2.11

n
q e~ S(a".q")/h

ap’

<q”|e_('8/2)H|q,>sc: ( 2mh

o where the notatiop; implies the final momentum angf is
=A(q",q")e Saa)A (2.6)  that value of the variablé for which Eq.(2.11) is obeyed. In
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words, this result implies equality of the final momenta of £
the two trajectories that originate at the dividing surface and S( g+ E-Q’Bs +3gq- E,QEs)
are propagated a times/2.
Varying the action with respect to the location in phase * &
spaceq gives a second condition ~S| g+ 5. dps| * S( q* - 7:QBs)
* * 1 Ips
o gt + %,qDS) I %,qu), (212 + 3 (5—§*>2+<q—q*>2) Ja, rolateh,

(2.19
implying that the final momenta have opposite signs. The
two conditions, given in Eqs(2.11) and (2.12, can be where we used the shorthand notation
obeyed simultaneously if and only if the final momenta are
zero. Thus the two contributing trajectories must end at turn-

ing points. pr IPs
a0

& &
1 q*+7,q’ss) (9Pf(q*—?,QBs)
Finally, one may also vary the location of the dividing =3

* *
surface. This is the heart of variational rate theory. In clas- 99 99
sical mechanics, one knows that classical transition state (2.19

theory (TST) will lead to an upper bound. In the quantum The derivativedp; /dgs plays a crucial role. If it is negative,

case, all that one can do is to demand that in any approxi- e ex % .
: ._then the pointg]*, ¢*, andqpg give a localmaximunof the

mate theory the rate be extremal with respect to the Iocat|0nCtion and the expansion about it is meaninaless. For hiah

of the dividing surface since the exact rate is independent of P 9 ’ 9

the location[21,23. This gives the third and final condition '/ Peratures, such thaw™ <, the derivative is positive
when expanding about the origin, the dynamics is classical-

like, and the smalE expansion used in Ref21] is valid.

. (213 Exactly at the temperatueBw*= 7 the derivative will
go to zero[27,28. At lower temperature, it will become
positive when expanding around the imaginary time periodic

The initial momenta must have the same magnitude but operbit, but will be negative when expanding about the origin.
posite Signs; therefore, they must have the same energy ard hlgh temperatures, the flux distribution will be dominated
so they lie on the same trajectory. This third condition iden-by the parabolic barrier; at low temperatures, the anharmo-
tifies the location of the dividing surface as that point for hicity comes into play and the flux is dominated by the
which the time(%8/2) it takes to reach either of the turning imaginary time periodic orbit.

points on the inverted potential is equal. In an asymmetric At high temperature, all momenta are to be expanded
potential, the optimal dividing surface is temperature depenaround zero so that

dent and will always tend towards the “soft” part of the

o} q*+§q* — _n. *_i *
i 2- DS pl q Z!qDS

potential. To summarize, the three conditions imply that the §

main orbit that contributes to the flux distribution is periodic, p‘( a- E’qDS) “PRilaty ’qDS)

with period Z8, that the maximum in the configuration

space will occur at the poirg*, which is halfway between ¢ Jpi(9,dps) +o(£) (2.16

the two turning points of the orbit, and that the optimal lo- aq o ' '

cation of the dividing surface is at the point that is halfway in 4

time between the two turning points. Using the quadratic expansion for the action and integrating
over the Wigner variablet one gets the expressidieg.

C. The high-temperature (% Bw*< ) semiclassical flux (3.18 of Ref.[21], given here for the sake of completenkss
distribution .
For a typical anharmonic potential, when inverted, the F(p.giifw < Gos=0)

period is shortest at low energy and increases monotonically api(9,0)|?

with the energy. The harmonic frequency of the inverted 1 aq

potential isw* [cf. Eq. (2.2).] For temperatures such that ~ 1/2 q:°3/2 p

h BI2< w/2w* there does not exist a trajectory that can fulfill 2ahm(wh)™* [ 9pg(q,0)

all three conditions, except for the trivial one, which sits at aq 0

the minimum of the inverted potential energy. The threshold 4

for the appearance of a nontrivial periodic solution is for 1 2 f?pf(q10)\ p?

temperatures such thaBo*> 7 [27,28. In this subsection Xexn 7 oq | * ap¢(q,0)

we will derive the semiclassical symmeterised flux distribu- a=0 T

tion in the high-temperature region, defined 788w*<r. q=0

The low-temperature distribution will be considered in Sec. (2.17

IID.
To obtain the flux distribution, one expands around theThe partial derivatives are identical to those of a parabolic
optimized pointsy*, &, andqpg up to quadratic terms well whose frequency is* and one readily finds that
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api(q,0]  met (2.18 F(p,g;hBw*>m,qhs)
I T ) .
dq q=0 sin(h Bw*/2) ﬁ1/2ﬁ1/2
500 . 1 |oaf| Joar
p#(Q. _ No = m(7h )32 ap;| 2
M|, @hBeD) 219 (—f)

The semiclassical flux distribution for high temperatures
(hBw*< ) is identical to the exact quantum flux distribu-
tion for a parabolic barrier, as already given in E8.6) of

99s
><exr{—1 S(q*+ 1€ l,q*—m;ﬁ,@”

f

2 2

2 A _A*)\2
Ref. [21]. The distribution has a single pedin the upper xexp| — —— 9Ps (@-9")
half plang, located close to the barrier top. Note that the flux A 9Pt IGs h
distribution differs from the product of the momentum and Qs
the Wigner representation of the operagor®™. —
gnerrep P J _|Sin(p|§*| UL g)
Pi h P aps ! 99 hol

D. The low-temperature (4 Bw*= ) semiclassical flux
distribution

(2.23

The more interesting case is for low temperatures. Thevhere we have abbreviated the notation and thesigns
minimum action occurs for two trajectory segments, leadingndicate the momentum gt + £*/2, etc. Note the difference
from gfs to g* + £*/2 and leading fronglg to g* —¢*/2.  between this result and the high-temperature distribution.
One must sum over the two possible solutions for the Wignef he dependence on the momentum is sinusoidal at low tem-

variable: =|£*|. The initial momentum is not zero and so Peratures, leading to alternate regions of positive and nega-
to leading order tive flux. At high temperatures, the flux is positive for posi-

tive momentum and negative for negative momentum, as
might have been expected from a classical-like limit. In the
deep tunneling region, this classical behavior disappears.
For extremely low temperatures, the period of the optimal
path goes to infinity as the trajectory approaches the
asymptotic region of the potential infinitely slowly. In this
limit, the partial derivativeip;/dq;— 0 and the saddle point
expansion becomes invalid. This deterioration in the quality
of the semiclassical expansion will be demonstrated explic-

PN ) U 3
pi{ g quDS Pi| 9 ZaQDS
& IAp; ap;
~2pi(q*—7qos)+2(q—q*) ar —(&—¢&%) 7,

(2.20

where we used the shorthand notation
*

itly for the symmetric Eckart barrier potential in Sec. IV.
As is evident from the discussion thus far, at the tempera-
ture #Bw*=1 a bifurcation occurs. At high temperature,

3 &
gAp; 1 f9pi(q* - 7) api| g* + 7) one has a single minimum of the action, located at the bot-
—= * " : tom of the well. At the bifurcation point, this minimum turns
qr 2 q oq 59 into a maximum, but two new minima appear, located on
@27 opposite sides of the well bottom. In the vicinity of this
bifurcation the standard semiclassical estimate of the propa
gator as given in Eq(2.6) is no longer valid. Grabert and
co-workers[27,28 have discussed in detail the appropriate
uniform approximation for the propagator that must be em-
ployed. Such a theory may be carried out, but the fourth-
order expansion of the action that leads to the uniform ex-
pression prevents analytic integration and leads to more
complicated expressiong7,28§|.

£ £
d g — — 1 og*+ =—
ap 1 5p'<q 2 &p'(q 2

g 2 aq* aq*

. (2.22

The momentum difference in E§2.20 must be expanded
up to first order. Around the crossover regibpw?*= 7 the
initial momentump; is small and the first-order term ié
— & becomes significant. For a symmetric potential the
middle term on the right-hand side of E@®.20 is zero by
symmetry. Since the first-order term is important mainly in
the vicinity of the crossover temperature, the middle term
will usually be small unless the potential is extremely asym- The matrix element of the propagator in the semiclassical
metric. Henceforth, it will be ignored. Second- and higher-limit takes the form
order terms in the expansion remain small at any tempera-
ture.

Using the Gaussian truncation for the action as in Eq.
(2.14), integrating over the Wigner variablein Eq. (2.10,
and summing the contributions of both pairs of trajectories
leads to the central result of this subsection:

lll. THE SEMICLASSICAL LIMIT
OF THE PROJECTION OPERATOR

A. Preliminaries

<q"|eith/ﬁ|q,>scz 2

cl paths

1 )l/Z(aZW(q”,q,;t) 1/2
2mih aq"dq’

F{i - im'r)
X ex %W(q .q ’t)_T ., (3.1
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where the sum is over all classical trajectories that start at p; —p; =0. (3.5
timet=0 at the poinfy’ and end at tim¢ at the pointg” and
v is the Maslov index. The Lagrangian acti?{(q”,q’;t) is  This means that the final momentum of the two trajectories
t must be the same, at the same final pgihtThe two trajec-
"oy — "o tories are therefore identical, that & =0.
W(a",a")= JOL(q ,q’)dt The first variation with respect to the Wigner varialgle
gives the second condition

q,/ n !
:Jq, dgy2m[E(q”,q',t) = V(q)] p—i(p+p)=0. (3.6

—-E(q",q',t)t (3.2  However, we already know from the first variatigiq.
(3.95] that the two trajectories are identical; therefore, the
andE(q",q’,t) is the classical energy of the trajectory. The second variation tells us that the initial momentum of the
semiclassical limit of the Wigner representation of the pro-trajectory must bep. This simplifies the analysis. It means

jection operator, taken at some fixed tityés that for any fixed point in phase spa(eq), the stationary
5 phase trajectory is the one that is initialized at that point and
P(p.qit) = i) f”dq, f“ de e is evolved up to the timé The point it reaches at timeis
o 2wh| Jo —w thereforeq’*. The fact thaig’ must be positive tells us that

only those trajectories that end up at tilgith positive final

1/2 . . . . . . .
coordinate will contribute to the semiclassical projection op-

E f
2 ’ 2 ’
1% W(q——z,q ,t) 1% W(q ,q+—2.t

erator.
X ¢ 3 The second variations of the exponents appearing in Eq.
ﬁ( q— 5) aq’ aq’&( q+ 5) (3.4) are
20\\+ — + -
i , g g , (9(W _W):O”pf (9&20 3
Xexp[%[w(q At 50t —W(q—i,q t)” 9q'? aq" d9q" @7
(33 PWT-W7) 1 (&pf* . &pf) _P gy
where we have ignored the Maslov index as it will not be aq’ 9§ 2\dq"  oq7) da;’ '
important in the one-dimensional theory presented in this
paper. FAW =W 1 (dp| dpi|
To simplify the ensuing analysis, it is convenient to use 9€2 2 W_ ﬁ =0. (3.9
the symmetry of the action with respect to the exchange of
the end points and rewrite EB.3) as Since expansion of the action arouqt*,£=0 gives to sec-
5 ond order only the termq’ —q’'*)¢, one can immediately
P(p.qit) = 1 de ,Jm de b integrate over the variable in Eq.(3.4) to obtain a Diracs
P9 27wh| Jo q —w function, whose argument is|(—q’'*)(dp¢/dq;). Note also
2 that on the stationary phase trajectory, the prefactor is
&ZW(q’,q—g,t) azw(q’,q+§,t ¢ ¢ 1/2
X : : &2W<q’,q—§,t) P*Wi Q',QJFE,I
a(q—i)ﬁq’ &q’a(q+§ 3 ‘
a<q——)aq’ d9'd| g+ =
2 2 gk e
i , , £ q'=q'*,§=0
xexp[g[w(q ,q+§,t —W(q ,q—z,t”}. ap;

We note that Eq92.8) and(2.9) hold also in real time. The Therefore integration ovey’ leads to the simple result
initial momentum of the trajectory starting at- £/2 will be
denotedp; (q’,q= £/2t), or in shortp;”, and the final mo-

1
P(p,q;t)=5— h(q'*,t). 3.1
mentum will be denoteg; . (P.ait)=5 7 M@0 3.19

In other words, the projection operator projects onto all those
phase space poinfp,q) that when evolved a timelead to a
The integration in Eq(3.4) is over two variables: the positive final value of the coordinate.
Wigner coordinate and the physical coordinatg, which is It is at this point that we take the infinite time limit (
restricted to the interval0,»). The integration over both —). Clearly, in this limit, all trajectories on one side of the
variables is to be made via stationary phase, expanding th&assical separatrix lead to products, while those on the other
actions up to second order about the stationary phase poistde lead to reactants. Therefore the infinite time limit of Eq.
(g’'*,£%). The first variation with respect tg’ gives (3.1) is just the classical projection operator

B. Stationary phase estimate of the projection operator
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1 Contrary perhaps to intuition, the parabolic barrier estimate
Po=5_— hlp=v—2mV(q)], (3.12  for the rate is not an upper bound, even for the symmetric
Eckart potential.

where the plus sign is taken for positigethe minus sign is _ i

taken for negativeg, and the potentiaV(q) is taken such B. Semiclassical rate theory for low temperature

thatg=0 is the location of the barrier and(0)=0. The low-temperature semiclassical rate expression is ob-
It is possible in principle to go beyond the stationary tained by insertion of the low-temperature semiclassical flux

phase result by expanding the action and the prefactor tfEq. (2.23] and the classical projection operafé&qg. (3.12]

higher orders in the variableg —q’*,&. This would lead to  into the exact rate expressi¢gg. (1.8)]. The result is

higher-order correction terms such as those derived in Ref.

[23]. k(fBw*>m)scimoctt
1/2] 1/2
_o(T)-? ap; |4 ap; |
IV. SEMICLASSICAL RATE THEORY r (2mh) gqf+| gq;|
A. Semiclassical rate theory for high temperatures |§*| |§*|
— * __
The semiclassical rate expression may be now obtained xex;{ % S( 0T B”(FlJFF ),

by replacing the exact projection operator, appearing in Eq.

(1.8), with the classical projection operator, given in Eq. 4.3
(3.12, and the exact quantum flux distribution by its semi-

classical approximation, as given in Eq2.17 and (2.23  Where

for the high- and low-temperature limits, respectively. The
integration over the momentum is analytical and one remains
with a simple quadrature for the remaining integration over
the coordinate. The resulting semiclassical rate expression
for the high-temperature region is thus found to be i f“’ dq o [(a-q*)?I11S,

_ €1 Ipi —(£*214h)S,
Fi=lpl=—% 54, /¢

k(% Bo* <) scimocLt
(_p) T - i[¢°] 2
J © _
—Q,(T) ! . \[ J',mdq x| erfc N cc.|, (4.9

Qﬁ

/ ap|f 2
= dq e (9—q )Szlh 2mv(q)/7S,
xeX[{ qz—pf/ ) ;{2mV(q/< pf”_ Fa= S, Jq

aq
(4.1 xcos(i \/—2mV(q)>. (4.5
The partial derivatives appearing in this expression have aI
ready been given in Eq$2.18 and(2.19. The erfc function is as defined in Ref29] and S,
For a parabolic barrier potential this result is exactly the= 1190y .
parabolic barrier estimate for the rate One may msert here also the parabolic barrier potential
[V(q)=—1me*g?] to regain the SCQTST expression.
o} Note that at the bifurcation temperatut@w*= 7 [27,29
= -1 the first contributionF;=0, while the second contribution

F, leads to an estimate that is exactly twice the estimate

obtained from Eg.(4.1), which is based on the high-
In other words, if one uses the semiclassical quantum TSTemperature limit. The low-temperature estimate includes
(SCLQTST in which the exact projection operator is re- contributions from two minima, the high-temperature only
placed by the parabolic barrier projection operator, the semifrom one. If one restricts the integration over the Wigner
classical rate theory reduces to the parabolic barrier approxiariableé to the interval[0) for the positive&* trajectory
mation for the rate. Semiclassical transition state theory, irand the interval—,0] for the negativet* trajectory, one
the high-temperature limit, is identical to the parabolic bar-obtains an approxmate uniform expression that will give the
rier estimate. correct factor ati Bw*= 7 and at lower temperature would

If, however, one uses the classical projection operator, theeduce to the result given in Eqgt.3—(4.5). As mentioned

result is different. For example, for a symmetric potential,in Sec. Il, the contributiorF, is mainly important in the
one will often find that the potentiaf(q), which is the true bifurcation region wher& ;~0. At much lower temperatures
potential, will be less negative than its parabolic barrier es¥, is substantially smaller thaR, .
timate. Therefore, the high-temperature semiclassical rate The action appearing in the semiclassical TST rate ex-
will be larger than obtained from the parabolic barrier result. pression is only half of the action of the full orbit, but the
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period of the full orbit is 28. The rate estimate is still sig- The dimensionless inverse temperatwreneasures the en-

nificantly lowered due to summation over the alternatingergy; v is allowed to vary between thigh temperatuneand

signs of the flux. However, typically, at very low tempera- « (zero temperatuje

ture, the semiclassical estimdts well as the exact quantum From Egs.(4.10 and(4.11) one readily finds that

TST and MQCLT estimates; see Ref21,23) will remain

somewhat larger than the exact rate. At high temperatures, _ %_ mmot v2—1 il

the quantum TST rate estimate is similar to the classical and 5= aq; 2 v 4.13

S0 again one has an upper estimate of the rate. It is therefore

not very surprising that in practice, quantum TST and MQ-and

CLT lead to an estimate that is larger than the exact rate, +

irrespective of temperature. ﬁ: Mo (4.14
(9qf 1/2 '

C. Practical application: The symmetric Eckart potential ) ) t .
Evidently, wheny=1, that is, whem Bw*= 7, the deriva-

The Eckart barrier potential, defined such that the barriefiye s, vanishes. As expected, it also vanishes when
energy is zero, has the form — o0, that is, in the limit of zero temperature.
For higher temperatures such that 1, one is expanding
-1 4.6 about the trajectory that sits about the bottom of the well
costt(q/d) forever, that isgo=po,=0. The second-order partial deriva-
. . . . . tives for this case are given in Eg®.18 and(2.19.
The imaginary time dynamics occurs on the inverted poten- In the Iow-temperatugre regimeqthe zmpeiatu?)e-dependent

tial whose Hamiltonian is location of the turning point is the solution of

V(q)=V*

p2 Vi

~2m  cosH(qg/d) TVE (4.7 cosl{ g—d) =. (4.15

H=E

The well energy is zero and the frequency at the bottom o

the well isw™=2V¥/md. The time-dependent solution for
a trajectory initiated at=0 at the point y,po) is

tI'he action of the trajectory initiated gt=0 ending at the
turning point is

1 (& 3 d 8
sinl—(@) =sinl-(% cogCt) + Po_ cosr(%)sin(Ct), 3 S(?) =57 N2Vi=v2(V'-B)]-E 5
d d mdC d
@8 1 .1
:ga( -5 5) (4.16

where the energy-dependent frequetis

2(VF—E) where the dimensionless parameter mmw*d?/%. The
C(E)= /—r- (4.9 classical dynamics may be expressed in terms of only the
md two reduced parametegsand a.

Using the reduced coordinate=qg/d and momentunp,
=(d/A)p one finds that up to a temperature-dependent nor-
malization constant the semiclassical symmetrized thermal
flux distribution in phase spadef. Eq. (2.23] becomes

The solution given in Eq4.9) is valid for the energy range
O<E=V%

The periodic orbit needed for the low-temperature flux
distribution is initiated atqp=0 and must end at timé

=h B2 at the turr_1ing p_oin't, SO 'thep(ﬁ,BIZ):O. The time F(py, X5 B>, qps=0)
dependence of this orbit simplifies to
_{a|  po ~(sir’[2px cosh 1(v)]
smI-(T) = desm(Ct), (4.10
Py 2v? _
so that + E Wﬁ COisz cosh (V)]
cogCt) 218 a(v’—1)
4.1 —p? —x?
(4.1 Xex;{ oD X 27 )

p(t)=po W
COS T

(4.17

During the time#i3/2 the orbit performs a quarter of a full As mentioned in Sec. II, the prefactor of the cosine function
0rb|t; therefore,Cﬁ,B/2= /2. This sets the temperature de- becomes |arge as—1 and becomes re'ative'y small as
pendence of the energy of the orbit a&=V* 1 plots of the resulting flux distributions are shown in Fig.

—m?md?/242 % or in dimensionless units 1 for the parameter values= 12 andv= 2/, 5/, 7/, and
£ 9 1 12/, The scale is the same as that of Fig. 1 of R28]. A
P (4.1  comparison of the semiclassical flux distribution and the nu-

\ #2320t T v merically exact quantum flux distributions as given in Ref.
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v=12/n (D)

FIG. 1. Semiclassical flux distributions in phase space for the symmetric Eckart barrier potentiaR). Each of the four panels
presents a 3D and a contour plot perspective of the distributions. The reduced temperature decreases gdifgfrotn in (a) to
% Bw*=12 in (d). The coordinates are dimensionless and the scale is set to the one used in Fig. 1[28Ref.
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[23] shows that the semiclassical approximation manages tc v=5/m, (A)
recover the quantum structure of the distributions.

The classical rate i&,=Q,(T) (1/2#% ). Putting all
this together, one finds that the semi-classical TST transmis-
sion coefficient for the symmetric Eckart barrier at low tem-
perature is

154

Kscimoctt
PscimocLT™= kg (hBw*>m)=P1+P,,
cl

(4.18 5]

0.8 1

o
X ex;{ —cosh ?(v) 53

2 4
avi—1
><|f dxex;{ 22 3>

v=I12/m, (B)

x| erf PO 2
C( cosr(x V-
1 1o
+i cosh *(v) > V3 —c.c.|, (4.19
0 0.4 = 0.6 0.8 1
X
b / 2a v 1 1
= S — —— 14+ —
2 mvi(v2—1) exp 2 2v -2
av _1 2013 FIG. 2. Coordinate dependence of the semiclassical transmis-
f dx ex ex m sion probability. (a) corresponds tmﬁw*=5 and (b) to ﬁﬂwi

=12.P(x) andx are in dimensionless unift (b) P(x) is in units

of 10°] such that the integral of the curves gives the transmission
probability. In both panels the dashed line is obtained using the
parabolic barrier projection operator and the semiclassical flux dis-
tribution and the solid line is obtained using the classical projection
operator and the semiclassical flux distribution.

1
8 ( - COSHX)Z)
><Cos<2<:osh‘1(v)E \/1- ! ) (4.20
T cosﬁ(x) ' '

The transmission probability may be rewritten formally as

However, at low temperature, the negative part almost ex-
actly cancels out the positive part and the net integral is only
approximately 1% of the maximal value of the integrand at

x=0.
A further comparison is given in Fig. 3 between the quan-
P:J P(x)dx, (4.2 tum transmlssmn factoP(x) computed from the pr_oduct o_f
0 the numerically exact quantum flux and the classical projec-

tion operator and its semiclassical approximation as obtained
where P(x) may be thought of as a coordinate-dependenfrom Egs. (4.18—(4.20. One notes that the semiclassical
transmission factor that if positive implies transmission totheory is in good qualitative agreement at both temperatures
the product side and if negative to the reactant silex) is  shown. However, av=5/7 the semiclassical theory is not
plotted vsx in Fig. 2@ for v=5/7 and in Fig. Zb) for »  quantitative in the close vicinity of the barrier. This is prob-
=12/m. Two curves are shown in each panel: The dashedbly due to the fact that for this temperature range one
line is obtained using the parabolic barrier separatrix and thehould really employ the uniform theory of Weiper, Anker-
solid line is obtained using the classical separatrix. One notesold, and Graberf27,28 for the semiclassical density ma-
that the two curves are very similar. However, the most strikirix because of the proximity to the bifurcation poiBw*
ing feature is that at the higher temperatiiFég. 2(a)] the =
main part of the curve is the positive component; the nega- The semiclassical transmission factor at high temperature
tive component of the curve is only half of the positive part.is
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X
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1
B cosﬁ(x))

A comparison between the semiclassical estimates and the
gquantum estimates for the transmission factor is provided in
Table | and Fig. 4, using the value af=12. The semiclas-
sical results fori Bw*<3 are based on Eq4.22 and the
lower-temperature results are obtained using E4sl8—
(4.20. Above the bifurcation temperature #f8w*= 7 the
semiclassical results are in quantitative agreement with the
quantum results. The semiclassical results obtained using the
parabolic barrier approximation for the projection operator
(SCLQTST) are identical to the parabolic barrier approxima-
tion. As discussed, they atewer than the results obtained
using the classical projection opera(&CLMQCLT) and are
lower than the exact rate.

For lower temperatures, the semiclassical theory is in
qualitative agreement with the quantum computations. The
quality of the semiclassical estimate deteriorates around the
bifurcation temperaturéi Bw*=m and also for very low
temperatures. The quality of the thermodynamic quantum
theories based on numerically exact computation of the sym-
metrized thermal flux does not deteriorate as much in these
limits, indicating that the error in the semiclassical approxi-
mation comes from inaccuracies in the evaluation of the

FIG. 3. Comparison of the semiclassical and q“am“msymmetrized thermal flux distribution.

coordinate-dependent transmission probabiligy. corresponds to
fiBw =5 and(b) to #Bw*=12. In both panels the dashed line is
obtained using the classical projection operator and the exact quan-
tum flux distribution and the solid line is obtained using the classi-
cal projection operator and the semiclassical flux distribution.

V. DISCUSSION

The semiclassical rate theory presented in this paper is an
outgrowth of recent work on the formulation of a quantum

TABLE I. Comparison of semiclassical and quantum transmission coefficients for the symmetric Eckart laarrie?) (

Bt SCLQTST QTST SCLMQCLT® MQCLT® Exacf
15 1.10 1.13 1.13 1.13
2 1.19 1.23 1.24 1.27 1.22
3 1.50 1.54 1.52 1.52
4 1.49 2.09 1.49 2.16 2.07
6 2.45 5.74 2.20 5.75 5.20
8 14.0 29.3 11.9 26.2 21.8

10 176.0 248.0 149 235.0 162
12 3525 3058 3006 2700 1970
14 9.30x 10¢ 8.07x 10* 3.41x 10*
16 2.91x 1¢° 2.56x 10° 7.41X10°
18 10.2< 107 9.10x 10’ 1.88x 10’
20 38.4< 10° 11.6x 10° 34.9<10° 8.64x 10 5.34x 10°

8SCLQTST is the semiclassical transmission coefficient using the parabolic barrier projection operator.

PQTST is the quantum transmission factor based on the numerically exact symmetrized thermal flux distribution and the parabolic barrier

projection operator, adapted from RE21].
°SCLMQCLT is the semiclassical transmission factor using the exact classical projection operator.

IMQCLT is the guantum transmission factor based on the numerically exact symmetrized thermal flux distribution and the exact classical

projection operator, adapted from RE23].
®Exact is the exact quantum mechanical transmission factor.
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201

151

in(pP)
10+

FIG. 4. Quantum and semiclassical thermal rate estimates for the symmetric Eckart barrier. The solid line is the exact quantum result, the
dashed line is the MQCLT estimate, and the dotted line is the SCLMQCLT estimiatZable | and the text u=7%Bw* and P is the
transmission factor, defined as the ratio of the quantum and classicalchfesg., Eq.(4.18].

thermodynamic theory of rates. In the quantum thermodyeor the classical separatrix is also not very big.
namic theory, the symmetrized thermal flux is computed nu- We have also presented a semiclassical analysis of the
merically exactly and the projection operator is taken to beprojection operator showing that a consistent use of the sta-
either the parabolic barrier projection opera@TST) or the  tionary phase approximation leads to the classical projection
classical projection operat@MQCLT). Practical application operator. This perhaps explains why use of the classical pro-
of both approximations to the symmetric and asymmetrigection operator usually improves the thermodynamic quan-
Eckart barrier leads to the following conclusiong) The tum estimate for the rate, as shown in R&3].
low-temperature symmetrized thermal flux distribution is 0s- The semiclassical theory provides insight into the tunnel-
cillatory in nature, with positive and negative contributions.ing process. The small tunneling rate is the net remainder
(b) Both theories seem to bound the exact rate from abovedrom a cancellation of the positive and negative parts of the
(c) In the asymmetric case, the approximations are consideftux distribution. At the same time, it is this cancellation that
ably improved by varying the location of the dividing surface makes the semiclassical estimate difficult. Although the
of the flux operator, choosing the extremal locati@).The  semiclassical theory does manage to account for the order of
differences between the two theories are not very big. magnitude changes in the tunneling rate, it is not quantitative
The semiclassical analysis presented in this paper goesespecially at low temperatures.
long way in explaining these findings. The oscillatory nature The analysis presented here is somewhat more complex
of the flux distribution is a direct consequence of the existhan the theory based on finding the imaginary part of the
tence of the imaginary time periodic orbit contribution to thefree energy (Inf method [1]. We note though that the I
flux distribution. At temperatures above the bifurcation tem-method is derived from first principles only for very low
peraturef, Bw*= 7, the flux distribution is localized about temperatures. It is exact @&=0 and at low temperatures the
the barrier top and has a single positive peak in the uppesrror obtained using this method is exponentially small
half of the phase space plane. Lowering the temperaturgl,30,31. However, as the temperature increases, the justifi-
brings into play the imaginary time period orbit, whose ac-cation for the use of the instanton method disappears and one
tion, length, and period increase with decreasing temperaesorts to connection formulas derived by other methad$
ture. The increase in the length of the orbit is the main cause provide a smooth transition from the low-temperature to
for the delocalization of the flux distribution and the forma- the high-temperature regime. This deficiency does not exist
tion of an oscillatory pattern. in the present semiclassical theory, which is derived from
Within the semiclassical theory, variation of the locationfirst principles and is applicable for moderately low to high
of the dividing surface causes the smooth joining of the twaemperatures, the region where the instanton method is least
trajectories that contribute to the flux, so that one remainsvell defined. The crossover from low to high temperatures is
with a single periodic orbit. Within the semiclassical theory, well understood and may be improved upon using a uniform
the difference between using the parabolic barrier separatritheory for the action.
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This paper dealt exclusively with one-dimensional tunnel-thermodynamic rate theory in multidimensional systems will
ing. The methodology is generalizable to multidimensionalbe given in Ref[32].
systems. The three variations used in Sec. Il to identify the
periodic orbit will be generalized to a variation over all co-
ordinates. This would lead again to a condition of zero mo- e thank Professor P. iggi and Dr. J.-L. Liao for
mentum of the end points and a smooth joining of the trajecstimulating discussions. This work has been supported by the
tory on the dividing surface. The difference is that in the Meitner-Humboldt FoundatiofE.P) and by grants from the
multidimensional case one may have in principle more thatMinerva Foundation, Munich, Germany, the U.S.—Israel Bi-
one trajectory that fulfills the conditions and one must sumrmational Science Foundation, and the German Israeli Foun-
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