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Semiclassical canonical rate theory
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Fachbereich Physik der Philipps, Universita¨t Marburg, Renthof Strasse 6, D-35037 Marburg, Germany

~Received 22 May 1998!

The exact quantum rate may be represented as a phase space trace of a product of two operators: the
symmetrized thermal flux operator and a projection operator onto the product space. A semiclassical analysis
of the phase space representation of these two operators is presented and used to explain recent results found
for a quantum thermodynamic rate theory. For low temperatures, the central object that is responsible for the
oscillatory nature of the flux operator is a periodic orbit on the upside down potential surface whose period is
2\/kBT. The semiclassical analysis of the flux distribution explains why a variation of the dividing surface
leads to improved thermodynamic rate estimates in asymmetric systems. The semiclassical limit~stationary
phase limit! of the projection operator is shown to be identical to the classical projection operator. A semi-
classical rate theory is obtained using the product of the semiclassical flux distribution and either the parabolic
barrier or the classical projection operator and compared with the exact rate and approximate quantum ther-
modynamic estimates.@S1063-651X~98!13310-X#

PACS number~s!: 03.65.Sq, 31.70.Hg, 82.20.Pm
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I. INTRODUCTION

The quantum theory of reaction rates@1# is almost as old
as quantum mechanics itself, but even at the turn of
century it presents some formidable challenges. During
past two decades one could broadly identify two approac
One is to recognize the difficulty in obtaining exact quantu
rate expressions except for some special cases, such
parabolic barrier, and proceed to find the numerically ex
quantum rate. This approach has seen dramatic adva
during the past decade and one now can almost routi
obtain numerically exact rates for systems with three deg
of freedom@2#.

A second approach, especially important for the co
densed matter community, was to replace rigor with reas
able approximations. A strategy that has gained much po
larity in recent years is to estimate quantum rates us
centroid densities@3,4#. Since a centroid density is a therm
dynamic object, it can be readily estimated using Mo
Carlo path integral techniques@5#.

Another major class of approximation methods may
thought of as mixed classical quantum propagation te
niques. Since time-dependent numerical methods for syst
with two or three degrees of freedom are available, it ma
sense to treat the quantum dynamics of a few degree
freedom exactly and treat the rest classically. The semic
sical theory of reaction rates has also been resurrecte
recent years. Various researchers@6,7# have noted that much
of the quantum dynamics may be accounted for by suita
integration of semiclassical approximations to the real ti
propagator. This approach has recently raised the questio
to whether quantum tunneling could be accounted for se
classically by considering only real time trajectories. Kes
vamurthy and Miller@8# showed that real time trajectorie
account for much of the tunneling, but Maitra and Hel
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@9,10# argued that deep tunneling can only be described w
the added help of imaginary time trajectories across the
rier.

One way of getting a semiclassical theory of thermal ra
is by considering the semiclassical microcanonical the
and then averaging over the canonical distribution. This
proach was used by Ha¨nggi and Hontscha@11# to derive an
expression for the thermal rate valid at all temperatur
They based themselves on Miller’s semiclassical transit
state theory@12#, which in turn is based on Wigner’s ap
proximate rate expression@13#.

In this paper we choose a different starting point: t
exact thermal rate expression as derived by Miller, Schwa
and Tromp@14# and used@15# by Thompson and Miller,

k~T!5Qr~T!21 lim
t→`

CFS~ t !, ~1.1!

whereCFS(t) is the so-called flux side correlation function
which may be written in the form

CFS~ t !5tr@ F̂~b,qDS!P~ t !#. ~1.2!

The quantum projection operatorP(t) is defined as

P~ t !5eiĤ t/\ĥ~ q̂!e2 iĤ t/\ ~1.3!

and ĥ is the step function operator, which~in the space rep-
resentation! is unity on the product side (q.0) and is zero
on the reactant side (q,0). F̂(b,qDS) is the symmetrized
quantum thermal flux operator at the dividing surface defin
by qDS ,

F̂~b,qDS!5e2bĤ/2F̂~qDS!e2bĤ/2, ~1.4!

and Ĥ is the Hamiltonian operator of the system. The sy
metrized flux operatorF̂(qDS) ~in one dimension! is

F̂~qDS!5
1

2m
@ p̂d~ q̂2qDS!1d~ q̂2qDS! p̂#, ~1.5!nn
5436 © 1998 The American Physical Society



in

ti
a

t

to

r

t
in
it
o-
d

ob

f
S
um
e
L
Th

a

is
o

TS
ng
an
ng
L
th
pr
a

e
for

of
ator

her
ks.
ve
A

ns
ct is
is

he
n-
n

is
mi-
t,
ite

h is
at
c-

o an
e
ratic
po-

mi-
or is
tial
ort
lly
uite
er
e

om
ep
he

he
d

bu-
root

e
ely
n-
ra-
ost.
al-
the
ssi-

two
et-
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Qr(T) is the reactants partition function at temperatureT,
andb51/kBT.

In Miller’s rate expression all the dynamics is hidden
the infinite time limit of the projection operator

P[ lim
t→`

P~ t !5 lim
t→`

eiĤ t/\ĥ~ q̂!e2 iĤ t/\. ~1.6!

Obtaining the exact rate necessitates a real time propaga
A numerically exact solution is feasible for systems with
few degrees of freedom@15–20#, but there is still a way to go
before one can rigorously implement the time evolution in
liquid.

In a recent publication@21# it was noted that Miller’s
exact rate expression could be recast as a phase space
of the Wigner representation@22# of the product of the pro-
jection operator and the symmetrized thermal flux opera
The Wigner representation of an operator is defined as

O~p,q!5
1

2p\ E
2`

`

dj eipj/\^q2 1
2 juÔuq1 1

2 j&.

~1.7!

The exact expression for the quantum rate may thus be w
ten formally as

k~T!5Qr~T!212p\E
2`

`

dp dq P~p,q!F~p,q;b,qDS!.

~1.8!

A quantum transition state theory~QTST! was then formu-
lated, in which one replaces the exact projection opera
with its leading-order approximation obtained by consider
only the dynamics of the parabolic barrier. Alternatively,
was suggested@21# that one could replace the quantum pr
jection operator with its classical limit, thus giving a mixe
quantum classical theory~MQCLT!, in which the flux opera-
tor is evaluated exactly and the projection operator is
tained from classical trajectories.

Both theories were studied in some detail in Refs.@21#
and @23#. It was shown in Ref.@21# that the accuracy o
QTST is comparable to that of the centroid method. QT
invariably gives a numerical upper bound for the quant
rate, whose accuracy deteriorates with decreasing temp
ture and increasing asymmetry of the potential. The MQC
approach gives an improvement, but not a very big one.
MQCLT approach was also subsequently implemented
Ref. @24#.

An interesting feature of both theories is their variation
property @21#. A variation of the location of the dividing
surface, looking for the point at which the approximation
stationary, leads to significant improvement in the case
asymmetric systems@23#.

These studies pose a few challenges. Why does Q
give an upper bound? Why is the variation of the dividi
surface useful and is it at all clear that one will really find
extremum of the reactive flux with respect to the dividi
surface? What is needed to improve the QTST and MQC
theories so that they will become quantitative even in
deep tunneling region? The perturbation theory analysis
sented in Ref.@23# indicated that a smearing of the classic
on.
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Heaviside function is important, but how does this com
about? Can one obtain a good quantum approximation
the projection operator?

In this paper we will provide a semiclassical analysis
the phase space structure of the symmetrized flux oper
and the projection operator. In Ref.@23# we found that for
deep tunneling, the thermal flux distribution becomes rat
delocalized in momentum, with positive and negative pea
The variational flux distribution had the same qualitati
structure, irrespective of the symmetry of the potential.
semiclassical theory for the flux distribution that explai
these features is presented in Sec. II. The variational aspe
also explained; the optimal location of the dividing surface
the one for which the two trajectories that contribute to t
symmetrized thermal flux operator join smoothly. The ce
tral object of the flux distribution is thus a periodic orbit o
the inverted potential, whose period is 2\b ~the factor of two
is not a misprint! and onlyhalf of its full action contributes
to the flux.

The semiclassical theory of the projection operator
studied in Sec. III. The idea that one could derive the se
classical limit of the projection operator would, at first sigh
seem strange. The projection operator has in it an infin
time limit and any semiclassical time-dependent approac
expected to fail for infinitely long times. Note, however, th
for a parabolic barrier, the semiclassical limit of the proje
tion operator is exact, even though here too one resorts t
infinite time limit. This is a reflection of the fact that th
semiclassical propagator takes into account the quad
fluctuations around the classical path and for a parabolic
tential this is all that matters. The generic potentialV(q) has
a parabolic form at the barrier, while asq→` or as q→
2` the potential goes to a constant, where again the se
classical propagator is exact. The semiclassical propagat
thus exact except for the nonharmonic region of the poten
where the particle spends typically a short time. For sh
time dynamics the semiclassical approximation is actua
good and one might expect a semiclassical theory to be q
useful. We find that the semiclassical limit of the Wign
distribution function of the projection operator is just th
classical projection operator.

A remarkable semiclassical picture thus emerges fr
this theory. The amplitude of the flux distribution in the de
tunneling region is reduced by only half of the action of t
imaginary time periodic orbit whose period is 2\b. This ac-
tion is substantially less than the full instanton action of t
periodic orbit with period\b that appears in the standar
semiclassical treatments of thermal reaction rates@1#. Indeed,
an upper bound for the rate, based on only the flux distri
tion, gives an estimate that is approximately the square
of the exact transmission coefficient@25#. The flux distribu-
tion is not positive definite and it is the combination of th
two operators that gives the tunneling rate. The relativ
large positive peaks of the flux distribution are almost e
tirely canceled by the negative peaks. The projection ope
tor defines the regions of phase space that contribute m
As the temperature is lowered, the flux distribution deloc
izes and it is the combination of this delocalization and
projection operator that leads to the net rate. The semicla
cal rate theory that emerges from the combination of the
operators is presented in Sec. IV and applied to the symm
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5438 PRE 58ELI POLLAK AND BRUNO ECKHARDT
ric Eckart barrier. We end in Sec. V with a further discuss
of the implications of the present theory on our understa
ing of quantum tunneling.

II. THE SEMICLASSICAL SYMMETRIZED THERMAL
FLUX OPERATOR IN PHASE SPACE

A. Preliminaries

For a particle with massm the one-dimensional Hamil
tonian operatorĤ is

Ĥ5
1

2m
p̂21V~ q̂!. ~2.1!

Without loss of generality, the potentialV may be divided
into a parabolic barrier and a nonlinear term

V~q!5V‡2 1
2 mv‡2

q21V1~q! ~2.2!

such that the barrier is located atq50. The matrix elements
of the symmetrized thermal flux operator may be expres
@14,21# in terms of matrix elements of the thermal dens

operatore2bĤ:

^q9uF̂~b,qDS!uq8&

5
i\

2m S K q9ue2bĤ/2u
]

]qDS
L ^qDSue2bĤ/2uq8&

2^q9ue2bĤ/2uqDS&K ]

]qDS
ue2bĤ/2uq8L D ,

~2.3!

where we used the shorthand notation

K q9Ue2bĤ/2U ]

]qDS
L [S ]

]q
^q9ue2bĤ/2uq& D

q5qDS

.

~2.4!

The Wigner representation of the symmetrised thermal
operator is then by definition

F~p,q;b,qDS!

5
i

4mp E
2`

`

dj ei ~pj/\!S K q2
j

2Ue2~b/2!ĤU ]

]qDS
L

3 K qDSUe2~b/2!ĤUq1
j

2L 2 K q2
j

2 Ue2bĤ/2UqDSL
3 K ]

]qDS
Ue2~b/2!ĤUq1

j

2L D . ~2.5!

The semiclassical approximation for a matrix element
the thermal density matrix is@26#

^q9ue2~b/2!Huq8&sc5S 2p\U]q9

]p8
U D 21/2

e2S~q9,q8!/\

[A~q9,q8!e2S~q9,q8!/\, ~2.6!
-

d

x

f

where the actionS(q9,q8) is that of a classical trajectory
moving on the upside down potential with energyE, which
was initiated at timet50 at the pointq8 and ended up a
time \b/2 at the pointq9:

S~q9,q8!5E
q8

q9
dq p~q!2 1

2 \bE. ~2.7!

The momentump8 in the prefactor of Eq.~2.6! is the initial
momentum of the trajectory. If more than one classical t
jectory obeys the double ended boundary conditions then
must sum over the contribution of all such trajectories.

The rate expression has in it derivatives of the therm
density matrix element. We note that

]S~q9,q8!

]q8
52p8, ~2.8!

]S~q9,q8!

]q9
5p9. ~2.9!

The derivative of the prefactor may be ignored since in
context of the semiclassical approximation it will only lea
to small correction terms. Therefore, we may write down
Wigner representation of the thermal flux operator as

F~p,q;b,qDS!

.
i

4mp\ E
2`

`

dj ei ~pj/\!Fpi S q2
j

2
,qDSD

2pi S q1
j

2
,qDSD GAS q2

j

2
,qDSD

3AS q1
j

2
,qDSDe2~1/\!@S~q1j/2,qDS!1S~q2j/2,qDS!#,

~2.10!

where we used the fact that the action and the prefactor
symmetric with respect to time reversal of the trajecto
@S(x,x8)5S(x8,x) andA(x8,x)5A(x,x8)#. The momentum
pi(q8,q) is the initial momentum of the trajectory that wa
initiated at timet50 at the pointq and reached the pointq8
at the time\b/2.

B. The optimal tunneling path

To understand the structure of the flux distribution
phase space, one should look for those regions in ph
space for which the amplitude of the flux distribution
maximal. The main contributions will come from those tr
jectories whose action is minimized. This implies minimi
ing the sum of actions appearing in the exponent, with
spect to two variables: the Wigner variablej and the location
in phase spaceq. Variation of the actions with respect to th
Wigner variablej gives the condition

pf S q1
j*

2
,qDSD5pf S q2

j*

2
,qDSD , ~2.11!

where the notationpf implies the final momentum andj* is
that value of the variablej for which Eq.~2.11! is obeyed. In
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words, this result implies equality of the final momenta
the two trajectories that originate at the dividing surface a
are propagated a time\b/2.

Varying the action with respect to the location in pha
spaceq gives a second condition

pf S q* 1
j*

2
,qDSD52pf S q* 2

j*

2
,qDSD , ~2.12!

implying that the final momenta have opposite signs. T
two conditions, given in Eqs.~2.11! and ~2.12!, can be
obeyed simultaneously if and only if the final momenta a
zero. Thus the two contributing trajectories must end at tu
ing points.

Finally, one may also vary the location of the dividin
surface. This is the heart of variational rate theory. In cl
sical mechanics, one knows that classical transition s
theory ~TST! will lead to an upper bound. In the quantu
case, all that one can do is to demand that in any appr
mate theory the rate be extremal with respect to the loca
of the dividing surface since the exact rate is independen
the location@21,23#. This gives the third and final conditio

pi S q* 1
j*

2
,qDS* D52pi S q* 2

j*

2
,qDS* D . ~2.13!

The initial momenta must have the same magnitude but
posite signs; therefore, they must have the same energy
so they lie on the same trajectory. This third condition ide
tifies the location of the dividing surface as that point f
which the time~\b/2! it takes to reach either of the turnin
points on the inverted potential is equal. In an asymme
potential, the optimal dividing surface is temperature dep
dent and will always tend towards the ‘‘soft’’ part of th
potential. To summarize, the three conditions imply that
main orbit that contributes to the flux distribution is period
with period 2\b, that the maximum in the configuratio
space will occur at the pointq* , which is halfway between
the two turning points of the orbit, and that the optimal l
cation of the dividing surface is at the point that is halfway
time between the two turning points.

C. The high-temperature „\bv‡<p… semiclassical flux
distribution

For a typical anharmonic potential, when inverted, t
period is shortest at low energy and increases monotonic
with the energy. The harmonic frequency of the invert
potential isv‡ @cf. Eq. ~2.2!.# For temperatures such tha
\b/2,p/2v‡ there does not exist a trajectory that can ful
all three conditions, except for the trivial one, which sits
the minimum of the inverted potential energy. The thresh
for the appearance of a nontrivial periodic solution is
temperatures such that\bv‡.p @27,28#. In this subsection
we will derive the semiclassical symmeterised flux distrib
tion in the high-temperature region, defined as\bv‡<p.
The low-temperature distribution will be considered in S
II D.

To obtain the flux distribution, one expands around
optimized pointsq* , j* , andqDS* up to quadratic terms
f
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-
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e

SS q1
j

2
,qDS* D1SS q2

j

2
,qDS* D

;SS q* 1
j*

2
,qDS* D1SS q* 2

j*

2
,qDS* D

1S 1

4
~j2j* !21~q2q* !2D ] p̄f

]qf
1o~q4,j4!,

~2.14!

where we used the shorthand notation

] p̄f

]qf
[

1

2
S ]pf S q* 1

j*

2
,qDS* D

]q*
1

]pf S q* 2
j*

2
,qDS* D

]q*
D .

~2.15!

The derivative] p̄f /]qf plays a crucial role. If it is negative
then the pointsq* , j* , andqDS* give a localmaximumof the
action and the expansion about it is meaningless. For h
temperatures, such that\bv‡,p, the derivative is positive
when expanding about the origin, the dynamics is classi
like, and the smallj expansion used in Ref.@21# is valid.

Exactly at the temperature\bv‡5p the derivative will
go to zero@27,28#. At lower temperature, it will become
positive when expanding around the imaginary time perio
orbit, but will be negative when expanding about the orig
At high temperatures, the flux distribution will be dominate
by the parabolic barrier; at low temperatures, the anharm
nicity comes into play and the flux is dominated by t
imaginary time periodic orbit.

At high temperature, all momenta are to be expand
around zero so that

pi S q2
j

2
,qDSD2pi S q1

j

2
,qDSD

;2j
]pi~q,qDS!

]q U
q50

1o~j3!. ~2.16!

Using the quadratic expansion for the action and integra
over the Wigner variablej one gets the expression@Eq.
~3.18! of Ref. @21#, given here for the sake of completenes#

F~p,q;\bv‡,p,qDS50!

.
1

2p\m~p\!1/2

]pi~q,0!

]q U
q50

2

S ]pf~q,0!

]q U
q50

D 3/2 p

3expF 2
1

\ S q2
]pf~q,0!

]q U
q50

1
p2

]pf~q,0!

]q U
q50

D G .

~2.17!

The partial derivatives are identical to those of a parabo
well whose frequency isv‡ and one readily finds that
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]pi~q,0!

]q U
q50

5
mv‡

sin~\bv‡/2!
, ~2.18!

]pf~q,0!

]q U
q50

5
mv‡

tan~\bv‡/2!
. ~2.19!

The semiclassical flux distribution for high temperatur
(\bv‡,p) is identical to the exact quantum flux distribu
tion for a parabolic barrier, as already given in Eq.~3.6! of
Ref. @21#. The distribution has a single peak~in the upper
half plane!, located close to the barrier top. Note that the fl
distribution differs from the product of the momentum a
the Wigner representation of the operatore2bH.

D. The low-temperature „\bv‡>p… semiclassical flux
distribution

The more interesting case is for low temperatures. T
minimum action occurs for two trajectory segments, lead
from qDS* to q* 1j* /2 and leading fromqDS* to q* 2j* /2.
One must sum over the two possible solutions for the Wig
variable: 6uj* u. The initial momentum is not zero and s
to leading order

pi S q2
j

2
,qDSD2pi S q1

j

2
,qDSD

;2pi S q* 2
j*

2
,qDS* D12~q2q* !

]Dpi

]qf
2~j2j* !

] p̄i

]qf
,

~2.20!

where we used the shorthand notation

]Dpi

]qf
5

1

2
S ]pi S q* 2

j*

2 D
]q*

2

]pi S q* 1
j*

2 D
]q*

D ,

~2.21!

] p̄i

]qf
5

1

2
S ]pi S q* 2

j*

2 D
]q*

1

]pi S q* 1
j*

2 D
]q*

D . ~2.22!

The momentum difference in Eq.~2.20! must be expanded
up to first order. Around the crossover region\bv‡.p the
initial momentumpi is small and the first-order term inj
2j* becomes significant. For a symmetric potential t
middle term on the right-hand side of Eq.~2.20! is zero by
symmetry. Since the first-order term is important mainly
the vicinity of the crossover temperature, the middle te
will usually be small unless the potential is extremely asy
metric. Henceforth, it will be ignored. Second- and high
order terms in the expansion remain small at any temp
ture.

Using the Gaussian truncation for the action as in E
~2.14!, integrating over the Wigner variablej in Eq. ~2.10!,
and summing the contributions of both pairs of trajector
leads to the central result of this subsection:
s

e
g

r

e

-
-
a-

.

s

F~p,q;\bv‡.p,qDS* !

.
1

m~p\!3/2

U ]pi

]qf
1U1/2U ]pi

]qf
2U1/2

S ] p̄f

]qf
D 1/2

3expF2
1

\
SS q* 1

uj* u
2

,q* 2
uj* u

2
;\b D G

3expS 2
p2

\
] p̄f

]qf

2
] p̄f

]qf

~q2q* !2

\ D
3F upi usinS puj* u

\ D1p
] p̄i /]qf

] p̄f /]qf
cosS pj*

\ D G ,
~2.23!

where we have abbreviated the notation and the6 signs
indicate the momentum atq* 6j* /2, etc. Note the difference
between this result and the high-temperature distributi
The dependence on the momentum is sinusoidal at low t
peratures, leading to alternate regions of positive and ne
tive flux. At high temperatures, the flux is positive for pos
tive momentum and negative for negative momentum,
might have been expected from a classical-like limit. In t
deep tunneling region, this classical behavior disappears

For extremely low temperatures, the period of the optim
path goes to infinity as the trajectory approaches
asymptotic region of the potential infinitely slowly. In thi
limit, the partial derivative] p̄f /]qf→0 and the saddle poin
expansion becomes invalid. This deterioration in the qua
of the semiclassical expansion will be demonstrated exp
itly for the symmetric Eckart barrier potential in Sec. IV.

As is evident from the discussion thus far, at the tempe
ture \bv‡5p a bifurcation occurs. At high temperatur
one has a single minimum of the action, located at the b
tom of the well. At the bifurcation point, this minimum turn
into a maximum, but two new minima appear, located
opposite sides of the well bottom. In the vicinity of th
bifurcation the standard semiclassical estimate of the pro
gator as given in Eq.~2.6! is no longer valid. Grabert and
co-workers@27,28# have discussed in detail the appropria
uniform approximation for the propagator that must be e
ployed. Such a theory may be carried out, but the four
order expansion of the action that leads to the uniform
pression prevents analytic integration and leads to m
complicated expressions@27,28#.

III. THE SEMICLASSICAL LIMIT
OF THE PROJECTION OPERATOR

A. Preliminaries

The matrix element of the propagator in the semiclass
limit takes the form

^q9ue2 iĤ t/\uq8&sc5 (
cl paths

S 1

2p i\ D 1/2S ]2W~q9,q8;t !

]q9]q8 D 1/2

3expS i

\
W~q9,q8;t !2

inp

2 D , ~3.1!
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where the sum is over all classical trajectories that star
time t50 at the pointq8 and end at timet at the pointq9 and
n is the Maslov index. The Lagrangian actionW(q9,q8;t) is

W~q9,q8;t !5E
0

t

L~q9,q8!dt

5E
q8

q9
dqA2m@E~q9,q8,t !2V~q!#

2E~q9,q8,t !t ~3.2!

andE(q9,q8,t) is the classical energy of the trajectory. Th
semiclassical limit of the Wigner representation of the p
jection operator, taken at some fixed timet, is

P~p,q;t !5S 1

2p\ D 2E
0

`

dq8E
2`

`

dj eipj/\

3S ]2WS q2
j

2
,q8,t D

]S q2
j

2D ]q8

]2WS q8,q1
j

2
,t D

]q8]S q1
j

2D D 1/2

3expH i

\ FWS q8,q1
j

2
,t D2WS q2

j

2
,q8,t D G J ,

~3.3!

where we have ignored the Maslov index as it will not
important in the one-dimensional theory presented in
paper.

To simplify the ensuing analysis, it is convenient to u
the symmetry of the action with respect to the exchange
the end points and rewrite Eq.~3.3! as

P~p,q;t !5S 1

2p\ D 2E
0

`

dq8E
2`

`

dj eipj/\

3S ]2WS q8,q2
j

2
,t D

]S q2
j

2D ]q8

]2WS q8,q1
j

2
,t D

]q8]S q1
j

2D D 1/2

3expH i

\ FWS q8,q1
j

2
,t D2WS q8,q2

j

2
,t D G J .

~3.4!

We note that Eqs.~2.8! and~2.9! hold also in real time. The
initial momentum of the trajectory starting atq6j/2 will be
denotedpi

6(q8,q6j/2,t), or in shortpi
6 , and the final mo-

mentum will be denotedpf
6 .

B. Stationary phase estimate of the projection operator

The integration in Eq.~3.4! is over two variables: the
Wigner coordinatej and the physical coordinateq8, which is
restricted to the interval@0,̀ !. The integration over both
variables is to be made via stationary phase, expanding
actions up to second order about the stationary phase p
(q8* ,j* ). The first variation with respect toq8 gives
at

-

is

f

he
int

pf
12pf

250. ~3.5!

This means that the final momentum of the two trajector
must be the same, at the same final pointq8. The two trajec-
tories are therefore identical, that is,j* 50.

The first variation with respect to the Wigner variablej
gives the second condition

p2 1
2 ~pi

11pi
2!50. ~3.6!

However, we already know from the first variation@Eq.
~3.5!# that the two trajectories are identical; therefore, t
second variation tells us that the initial momentum of t
trajectory must bep. This simplifies the analysis. It mean
that for any fixed point in phase space~p,q!, the stationary
phase trajectory is the one that is initialized at that point a
is evolved up to the timet. The point it reaches at timet is
thereforeq8* . The fact thatq8 must be positive tells us tha
only those trajectories that end up at timet with positive final
coordinate will contribute to the semiclassical projection o
erator.

The second variations of the exponents appearing in
~3.4! are

]2~W12W2!

]q82 5
]pf

1

]q8
2

]pf
2

]q8
50, ~3.7!

]2~W12W2!

]q8]j
5

1

2 S ]pf
1

]qi
1 1

]pf
2

]qi
2 D 5

]pf

]qi
, ~3.8!

]2~W12W2!

]j2 52
1

4 S ]pi
1

]qi
12

]pi
2

]qi
2 D 50. ~3.9!

Since expansion of the action aroundq8* ,j50 gives to sec-
ond order only the term (q82q8* )j, one can immediately
integrate over thej variable in Eq.~3.4! to obtain a Diracd
function, whose argument is (q82q8* )(]pf /]qi). Note also
that on the stationary phase trajectory, the prefactor is

S ]2WS q8,q2
j

2
,t D

]S q2
j

2D ]q8

]2WS q8,q1
j

2
,t D

]q8]S q1
j

2D D 1/2U
q85q8* ,j50

5
]pf

]qi
. ~3.10!

Therefore integration overq8 leads to the simple result

P~p,q;t !5
1

2p\
h~q8* ,t !. ~3.11!

In other words, the projection operator projects onto all tho
phase space points~p,q! that when evolved a timet lead to a
positive final value of the coordinate.

It is at this point that we take the infinite time limit (t
→`). Clearly, in this limit, all trajectories on one side of th
classical separatrix lead to products, while those on the o
side lead to reactants. Therefore the infinite time limit of E
~3.11! is just the classical projection operator
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Pcl5
1

2p\
h@p6A22mV~q!#, ~3.12!

where the plus sign is taken for positiveq, the minus sign is
taken for negativeq, and the potentialV(q) is taken such
that q50 is the location of the barrier andV(0)50.

It is possible in principle to go beyond the stationa
phase result by expanding the action and the prefacto
higher orders in the variablesq82q8* ,j. This would lead to
higher-order correction terms such as those derived in R
@23#.

IV. SEMICLASSICAL RATE THEORY

A. Semiclassical rate theory for high temperatures

The semiclassical rate expression may be now obta
by replacing the exact projection operator, appearing in
~1.8!, with the classical projection operator, given in E
~3.12!, and the exact quantum flux distribution by its sem
classical approximation, as given in Eqs.~2.17! and ~2.23!
for the high- and low-temperature limits, respectively. T
integration over the momentum is analytical and one rema
with a simple quadrature for the remaining integration o
the coordinate. The resulting semiclassical rate expres
for the high-temperature region is thus found to be

k~\bv‡,p!SCLMQCLT

5Qr~T!21
1

4mp\
A\

p

S ]pi

]q D 2

A]pf

]q

E
2`

`

dq

3expS 2q2
]pf

]q Y \ DexpF2mV~q!Y S \
]pf

]q D G .
~4.1!

The partial derivatives appearing in this expression have
ready been given in Eqs.~2.18! and ~2.19!.

For a parabolic barrier potential this result is exactly t
parabolic barrier estimate for the rate

kPB5Qr~T!21
v‡

4p sin~\bv‡/2!
. ~4.2!

In other words, if one uses the semiclassical quantum T
~SCLQTST! in which the exact projection operator is r
placed by the parabolic barrier projection operator, the se
classical rate theory reduces to the parabolic barrier appr
mation for the rate. Semiclassical transition state theory
the high-temperature limit, is identical to the parabolic b
rier estimate.

If, however, one uses the classical projection operator,
result is different. For example, for a symmetric potenti
one will often find that the potentialV(q), which is the true
potential, will be less negative than its parabolic barrier
timate. Therefore, the high-temperature semiclassical
will be larger than obtained from the parabolic barrier resu
to

f.

d
q.
.
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r
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l-

T

i-
i-
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e
,

-
te
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Contrary perhaps to intuition, the parabolic barrier estim
for the rate is not an upper bound, even for the symme
Eckart potential.

B. Semiclassical rate theory for low temperature

The low-temperature semiclassical rate expression is
tained by insertion of the low-temperature semiclassical fl
@Eq. ~2.23!# and the classical projection operator@Eq. ~3.12!#
into the exact rate expression@Eq. ~1.8!#. The result is

k~\bv‡.p!SCLMQCLT

5Qr~T!21
1

~2mp\! U ]pi

]qf
1U1/2U ]pi

]qf
2U1/2

3expF2
1

\
SS q* 1

uj* u
2

,q* 2
uj* u

2
;\b D G~F11F2!,

~4.3!

where

F1[S upi u2
uj* u

2

] p̄i

]qf
De2~j* 2/4\!S2

3
1

2i E2`

`

dq e2@~q2q* !2/\#S2

3F erfcS A22mV~q!2 i uj* u
S2

2

A\S2

D 2c.c.G , ~4.4!

F2[A \

pS2

] p̄i

]qf
E

2`

`

dq e2~q2q* !2S2 /\e2mV~q!/\S2

3cosS j*

\
A22mV~q! D . ~4.5!

The erfc function is as defined in Ref.@29# and S2
[] p̄f /]qf .

One may insert here also the parabolic barrier poten

@V(q)52 1
2 mv‡2

q2# to regain the SCQTST expressio
Note that at the bifurcation temperature\bv‡5p @27,28#
the first contributionF150, while the second contribution
F2 leads to an estimate that is exactly twice the estim
obtained from Eq.~4.1!, which is based on the high
temperature limit. The low-temperature estimate includ
contributions from two minima, the high-temperature on
from one. If one restricts the integration over the Wign
variablej to the interval@0,̀ ! for the positivej* trajectory
and the interval~2`,0# for the negativej* trajectory, one
obtains an approximate uniform expression that will give
correct factor at\bv‡5p and at lower temperature woul
reduce to the result given in Eqs.~4.3!–~4.5!. As mentioned
in Sec. II, the contributionF2 is mainly important in the
bifurcation region whereF1;0. At much lower temperature
F2 is substantially smaller thanF1 .

The action appearing in the semiclassical TST rate
pression is only half of the action of the full orbit, but th
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period of the full orbit is 2\b. The rate estimate is still sig
nificantly lowered due to summation over the alternat
signs of the flux. However, typically, at very low temper
ture, the semiclassical estimate~as well as the exact quantum
TST and MQCLT estimates; see Refs.@21,23#! will remain
somewhat larger than the exact rate. At high temperatu
the quantum TST rate estimate is similar to the classical
so again one has an upper estimate of the rate. It is there
not very surprising that in practice, quantum TST and M
CLT lead to an estimate that is larger than the exact r
irrespective of temperature.

C. Practical application: The symmetric Eckart potential

The Eckart barrier potential, defined such that the bar
energy is zero, has the form

V~q!5V‡S 1

cosh2~q/d!
21D . ~4.6!

The imaginary time dynamics occurs on the inverted pot
tial whose Hamiltonian is

H5E5
p2

2m
2

V‡

cosh2~q/d!
1V‡. ~4.7!

The well energy is zero and the frequency at the bottom
the well isv‡2

52V‡/md2. The time-dependent solution fo
a trajectory initiated att50 at the point (q0 ,p0) is

sinhS q~ t !

d D5sinhS q0

d D cos~Ct!1
p0

mdC
coshS q0

d D sin~Ct!,

~4.8!

where the energy-dependent frequencyC is

C~E!5A2~V‡2E!

md2 . ~4.9!

The solution given in Eq.~4.8! is valid for the energy range
0<E<V‡.

The periodic orbit needed for the low-temperature fl
distribution is initiated atq050 and must end at timet
5\b/2 at the turning point, so thatp(\b/2)50. The time
dependence of this orbit simplifies to

sinhS q~ t !

d D5
p0

mdC
sin~Ct!, ~4.10!

so that

p~ t !5p0

cos~Ct!

coshS q~ t !

d D . ~4.11!

During the time\b/2 the orbit performs a quarter of a fu
orbit; therefore,C\b/25p/2. This sets the temperature d
pendence of the energy of the orbit asE5V‡

2p2md2/2\2b2 or in dimensionless units

E

V‡ 512
p2

\2b2v‡2 [12
1

n2 . ~4.12!
s,
d
re

-
e,

r

-

f

The dimensionless inverse temperaturen measures the en
ergy; n is allowed to vary between 1~high temperature! and
` ~zero temperature!.

From Eqs.~4.10! and ~4.11! one readily finds that

S2[
]pf

]qf
5

pmv‡

2

n221

n3 ~4.13!

and

]pi

]qf
5

mv‡

n2 . ~4.14!

Evidently, whenn51, that is, when\bv‡5p, the deriva-
tive S2 vanishes. As expected, it also vanishes whenn
→`, that is, in the limit of zero temperature.

For higher temperatures such thatn,1, one is expanding
about the trajectory that sits about the bottom of the w
forever, that is,q05p050. The second-order partial deriva
tives for this case are given in Eqs.~2.18! and ~2.19!.

In the low-temperature regime, the temperature-depend
location of the turning point is the solution of

coshS j*

2dD5n. ~4.15!

The action of the trajectory initiated atq50 ending at the
turning point is

1

\
SS j*

2 D5
pd

2\
@A2V‡2A2~V‡2E!#2E

b

2

5
1

2
aS 12

n

2
2

1

2n D , ~4.16!

where the dimensionless parametera5pmv‡d2/\. The
classical dynamics may be expressed in terms of only
two reduced parametersn anda.

Using the reduced coordinatex5q/d and momentumpx
5(d/\)p one finds that up to a temperature-dependent n
malization constant the semiclassical symmetrized ther
flux distribution in phase space@cf. Eq. ~2.23!# becomes

F~px ,x;\bv‡.p,qDS50!

;S sin@2px cosh21~n!#

1
px

a

2n2

~n221!3/2 cos@2px cosh21~n!# D
3expS 2px

2 2n3

a~n221!
2x2

a~n221!

2n3 D .

~4.17!

As mentioned in Sec. II, the prefactor of the cosine funct
becomes large asn→1 and becomes relatively small asn
@1. Plots of the resulting flux distributions are shown in F
1 for the parameter valuesa512 andn52/p, 5/p, 7/p, and
12/p. The scale is the same as that of Fig. 1 of Ref.@23#. A
comparison of the semiclassical flux distribution and the
merically exact quantum flux distributions as given in R
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FIG. 1. Semiclassical flux distributions in phase space for the symmetric Eckart barrier potential (a512). Each of the four panels
presents a 3D and a contour plot perspective of the distributions. The reduced temperature decreases going from\bv‡52 in ~a! to
\bv‡512 in ~d!. The coordinates are dimensionless and the scale is set to the one used in Fig. 1 of Ref.@23#.
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@23# shows that the semiclassical approximation manage
recover the quantum structure of the distributions.

The classical rate iskcl5Qr(T)21(1/2p\b). Putting all
this together, one finds that the semi-classical TST transm
sion coefficient for the symmetric Eckart barrier at low te
perature is

PSCLMQCLT[
kSCLMQCLT

kcl
~\bv‡.p!5P11P2 ,

~4.18!

P15
a

n SA12
1

n22
cosh21~n!

n2 D expFaS n

2
211

1

2n D G
3expS 2cosh22~n!

a

2

n221

n3 D
3 i E

0

`

dx expS 2x2
a

2

n221

n3 D
3FerfcSA12

1

cosh~x!2

A2a

p
A n3

n221

1 i cosh21~n!Aa

2

n221

n3 D 2c.c.G , ~4.19!

P252A 2a

pn3~n221!
expFaS n

2
211

1

2n D G
3E

0

`

dx expS 2x2
a

2

n221

n3 DexpF2
2an3

p2~n221!

3S 12
1

cosh~x!2D G
3cosS 2 cosh21~n!

a

p
A12

1

cosh2~x!
D . ~4.20!

The transmission probability may be rewritten formally

P5E
0

`

P~x!dx, ~4.21!

where P(x) may be thought of as a coordinate-depend
transmission factor that if positive implies transmission
the product side and if negative to the reactant side.P(x) is
plotted vsx in Fig. 2~a! for n55/p and in Fig. 2~b! for n
512/p. Two curves are shown in each panel: The das
line is obtained using the parabolic barrier separatrix and
solid line is obtained using the classical separatrix. One n
that the two curves are very similar. However, the most st
ing feature is that at the higher temperature@Fig. 2~a!# the
main part of the curve is the positive component; the ne
tive component of the curve is only half of the positive pa
to

is-
-

t

d
e

es
-

-
.

However, at low temperature, the negative part almost
actly cancels out the positive part and the net integral is o
approximately 1% of the maximal value of the integrand
x50.

A further comparison is given in Fig. 3 between the qua
tum transmission factorP(x) computed from the product o
the numerically exact quantum flux and the classical proj
tion operator and its semiclassical approximation as obtai
from Eqs. ~4.18!–~4.20!. One notes that the semiclassic
theory is in good qualitative agreement at both temperatu
shown. However, atn55/p the semiclassical theory is no
quantitative in the close vicinity of the barrier. This is pro
ably due to the fact that for this temperature range o
should really employ the uniform theory of Weiper, Anke
hold, and Grabert@27,28# for the semiclassical density ma
trix because of the proximity to the bifurcation point\bv‡

5p.
The semiclassical transmission factor at high tempera

is

FIG. 2. Coordinate dependence of the semiclassical trans
sion probability. ~a! corresponds to\bv‡55 and ~b! to \bv‡

512. P(x) andx are in dimensionless units@in ~b! P(x) is in units
of 105# such that the integral of the curves gives the transmiss
probability. In both panels the dashed line is obtained using
parabolic barrier projection operator and the semiclassical flux
tribution and the solid line is obtained using the classical project
operator and the semiclassical flux distribution.
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5446 PRE 58ELI POLLAK AND BRUNO ECKHARDT
FIG. 3. Comparison of the semiclassical and quant
coordinate-dependent transmission probability.~a! corresponds to
\bv‡55 and~b! to \bv‡512. In both panels the dashed line
obtained using the classical projection operator and the exact q
tum flux distribution and the solid line is obtained using the clas
cal projection operator and the semiclassical flux distribution.
m

kMQCLT

kcl
~\bv‡,p!5

nAa tan~pn/2!

sin2~pn/2!
E

0

`

dx exp

3S 2
ax2

p tan~pn/2! DexpF2
a

p
tan~pn/2!

3S 12
1

cosh2~x! D G . ~4.22!

A comparison between the semiclassical estimates and
quantum estimates for the transmission factor is provided
Table I and Fig. 4, using the value ofa512. The semiclas-
sical results for\bv‡<3 are based on Eq.~4.22! and the
lower-temperature results are obtained using Eqs.~4.18!–
~4.20!. Above the bifurcation temperature of\bv‡5p the
semiclassical results are in quantitative agreement with
quantum results. The semiclassical results obtained using
parabolic barrier approximation for the projection opera
~SCLQTST! are identical to the parabolic barrier approxim
tion. As discussed, they arelower than the results obtained
using the classical projection operator~SCLMQCLT! and are
lower than the exact rate.

For lower temperatures, the semiclassical theory is
qualitative agreement with the quantum computations. T
quality of the semiclassical estimate deteriorates around
bifurcation temperature\bv‡5p and also for very low
temperatures. The quality of the thermodynamic quant
theories based on numerically exact computation of the sy
metrized thermal flux does not deteriorate as much in th
limits, indicating that the error in the semiclassical appro
mation comes from inaccuracies in the evaluation of t
symmetrized thermal flux distribution.

V. DISCUSSION

The semiclassical rate theory presented in this paper is
outgrowth of recent work on the formulation of a quantu

n-
i-
ic barrier

classical
TABLE I. Comparison of semiclassical and quantum transmission coefficients for the symmetric Eckart barrier (a512).

\bv‡ SCLQTSTa QTSTb SCLMQCLTc MQCLTd Exacte

1.5 1.10 1.13 1.13 1.13
2 1.19 1.23 1.24 1.27 1.22
3 1.50 1.54 1.52 1.52
4 1.49 2.09 1.49 2.16 2.07
6 2.45 5.74 2.20 5.75 5.20
8 14.0 29.3 11.9 26.2 21.8

10 176.0 248.0 149 235.0 162
12 3525 3058 3006 2700 1970
14 9.303104 8.073104 3.413104

16 2.913106 2.563106 7.413105

18 10.23107 9.103107 1.883107

20 38.43108 11.63108 34.93108 8.643108 5.343108

aSCLQTST is the semiclassical transmission coefficient using the parabolic barrier projection operator.
bQTST is the quantum transmission factor based on the numerically exact symmetrized thermal flux distribution and the parabol
projection operator, adapted from Ref.@21#.
cSCLMQCLT is the semiclassical transmission factor using the exact classical projection operator.
dMQCLT is the quantum transmission factor based on the numerically exact symmetrized thermal flux distribution and the exact
projection operator, adapted from Ref.@23#.
eExact is the exact quantum mechanical transmission factor.
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FIG. 4. Quantum and semiclassical thermal rate estimates for the symmetric Eckart barrier. The solid line is the exact quantum
dashed line is the MQCLT estimate, and the dotted line is the SCLMQCLT estimate~cf. Table I and the text!. u5\bv‡ and P is the
transmission factor, defined as the ratio of the quantum and classical rates@cf., e.g., Eq.~4.18!#.
dy
nu
b

tri

s
s
v

de
ce

es
r
is

he
m
t
p
tu
c

er
us
a-

on
w
in

ry
t

the
sta-
tion
pro-
an-

el-
der
the
at
he
r of

tive

plex
the

e
all
tifi-
one

to
xist
om
h

east
is

rm
thermodynamic theory of rates. In the quantum thermo
namic theory, the symmetrized thermal flux is computed
merically exactly and the projection operator is taken to
either the parabolic barrier projection operator~QTST! or the
classical projection operator~MQCLT!. Practical application
of both approximations to the symmetric and asymme
Eckart barrier leads to the following conclusions.~a! The
low-temperature symmetrized thermal flux distribution is o
cillatory in nature, with positive and negative contribution
~b! Both theories seem to bound the exact rate from abo
~c! In the asymmetric case, the approximations are consi
ably improved by varying the location of the dividing surfa
of the flux operator, choosing the extremal location.~d! The
differences between the two theories are not very big.

The semiclassical analysis presented in this paper go
long way in explaining these findings. The oscillatory natu
of the flux distribution is a direct consequence of the ex
tence of the imaginary time periodic orbit contribution to t
flux distribution. At temperatures above the bifurcation te
perature\bv‡5p, the flux distribution is localized abou
the barrier top and has a single positive peak in the up
half of the phase space plane. Lowering the tempera
brings into play the imaginary time period orbit, whose a
tion, length, and period increase with decreasing temp
ture. The increase in the length of the orbit is the main ca
for the delocalization of the flux distribution and the form
tion of an oscillatory pattern.

Within the semiclassical theory, variation of the locati
of the dividing surface causes the smooth joining of the t
trajectories that contribute to the flux, so that one rema
with a single periodic orbit. Within the semiclassical theo
the difference between using the parabolic barrier separa
-
-
e

c

-
.
e.
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a
e
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-

er
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-
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e

o
s
,
rix

or the classical separatrix is also not very big.
We have also presented a semiclassical analysis of

projection operator showing that a consistent use of the
tionary phase approximation leads to the classical projec
operator. This perhaps explains why use of the classical
jection operator usually improves the thermodynamic qu
tum estimate for the rate, as shown in Ref.@23#.

The semiclassical theory provides insight into the tunn
ing process. The small tunneling rate is the net remain
from a cancellation of the positive and negative parts of
flux distribution. At the same time, it is this cancellation th
makes the semiclassical estimate difficult. Although t
semiclassical theory does manage to account for the orde
magnitude changes in the tunneling rate, it is not quantita
especially at low temperatures.

The analysis presented here is somewhat more com
than the theory based on finding the imaginary part of
free energy (ImF method! @1#. We note though that the ImF
method is derived from first principles only for very low
temperatures. It is exact atT50 and at low temperatures th
error obtained using this method is exponentially sm
@1,30,31#. However, as the temperature increases, the jus
cation for the use of the instanton method disappears and
resorts to connection formulas derived by other methods@11#
to provide a smooth transition from the low-temperature
the high-temperature regime. This deficiency does not e
in the present semiclassical theory, which is derived fr
first principles and is applicable for moderately low to hig
temperatures, the region where the instanton method is l
well defined. The crossover from low to high temperatures
well understood and may be improved upon using a unifo
theory for the action.
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This paper dealt exclusively with one-dimensional tunn
ing. The methodology is generalizable to multidimensio
systems. The three variations used in Sec. II to identify
periodic orbit will be generalized to a variation over all c
ordinates. This would lead again to a condition of zero m
mentum of the end points and a smooth joining of the traj
tory on the dividing surface. The difference is that in t
multidimensional case one may have in principle more th
one trajectory that fulfills the conditions and one must s
over all the trajectories. A more detailed consideration of
.

.

-
l
e

-
-

n

e

thermodynamic rate theory in multidimensional systems w
be given in Ref.@32#.
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